St Gabriel's C of E Primary School Calculation Policy

At St Gabriel's C of E Primary School, the aim of our calculation policy is to ensure all children receive equity of offer. Our calculation policy provides clarity on how procedural knowledge (skills) are developed across the school. Calculation procedures are taught according to this document so they can be seamlessly built upon year after year, as a child moves through school.
In all year groups, we use the 'White Rose Maths Hub' scheme of learning as a basis for our planning. White Rose follows the Concrete - Pictorial - Abstract approach to teaching maths.

- Concrete is the 'doing' stage, using concrete objects to solve problems.
- The pictorial or 'seeing' stage uses representations of objects to solve problems. This helps children make the connection between the physical object and abstract levels of understanding, which is the stage they move onto next.
- The abstract stage brings in mathematical symbols, for example $+,-, x, \div$ to indicate addition, subtraction, multiplication and division.

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. Staff should use this policy alongside the additional guidelines (White Rose Maths Hub) and progression documents. It is a working document and will be revised and amended as necessary.

EYFS

Addition	Subtraction	Multiplication	Division
Children are encouraged to gain a sense of the number system through the use of counting objects. They combine objects in practical ways and count all. They understand addition as counting on and will count on in ones and twos using objects, cubes, bead strings and number lines. They use concrete and pictorial representations to record their calculations.	Children are encouraged to gain a sense of the number system through the use of counting concrete objects. They understand subtraction as counting out. They begin to count back in ones and twos using objects, cubes, bead strings and number lines. They use concrete and pictorial representations to record their calculations. They begin to use - and $=$	Children use concrete objects to make and count equal groups of objects. They will count on in twos using a bead string and number line. They understand doubling as repeated addition. e.g. $2+2=4$ They use concrete and pictorial representations to record their calculations.	Children use concrete objects to count and share equally into 2 groups. 6 cakes shared between 2 people, each person gets 3 cakes. $6 \div 2=3$ 0 They understand sharing and halving as dividing by 2 . They will begin to use objects to make groups of 2 from a given amount.

	Regrouping to make 10 This is an essential skill for column addition later.	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	-0. 0 $6+5=11$ (4) 1 $6+4=10$ $10+1=11$ Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9+5=14$ 1	$6+5=11$
	Adding multiples of 10	Model using dienes and bead strings Use number bond facts. e.g. I know that $2+3=5$ So, 2 tens and 3 tens is 5 tens. $20+30=50$	Use representations for base ten.	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$
	Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$

Add a two digit
number and
ones

	Column method with regrouping	Make both numbers on a place value grid. Add up the units and exchange 10 ones for 1 ten. As children move on to decimals, money and decimal place value counters can be used to support learning. NB By Year 4 children will progress on to adding four digit numbers.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.	$\begin{aligned} & 100+40+6 \\ & \frac{500+20+7}{600+70+3}=673 \end{aligned}$ As the children progress, they will move from the expanded to the compacted method. $\begin{array}{r} 146 \\ +\quad \frac{527}{} \\ \hline \frac{673}{1} \end{array}$
\pm \mathbf{O} ¢	Add numbers with up to 4 digits	 Children continue to use dienes or pv counters to add and exchange.	 Draw representations using a pv grid.	$\begin{array}{r} 3517 \\ +\quad 396 \\ \hline 3913 \end{array}$ Continue from previous learning to exchange hundreds as well as tens. Relate to money and measures.

Subtraction				
	Key Skill	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { ■ } \\ & \underset{\sim}{0} \end{aligned}$	Subtract łwo 1-digit numbers to 10 / Subtract 1 and 2-digit numbers to 20 Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away.	$15-3=12$ Cross out drawn objects to show what has been taken away.	$7-4=3$ $16-9=7$
	Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track. Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help. $13-4=$

Find the
difference

Compare amounts and objects to find
the difference.

Represent
and use
number
bonds and
related
subtractio
n facts
within 20.

Part-part
whole
model

Use cubes to build towers or make bars
to find the difference. Use basic bar
models with items to find the difference.

N $\stackrel{0}{0}$ 	Subtract 1 and 2-digit numbers to 100 Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'		$20-4=16$
	Partitionin g to subtract without regroupin g	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. ם $43-21=22$	$43-21=22$
	Make ten strategy	$34-28$ Use a bead bar or bead strings to model counting to next ten and the rest.	 Use a number line to count on to next ten and then the rest.	$93-76=17$

Column subtractio n method without regroupin g	$75-42=33$ Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.	 Draw the Base 10 or place value counters alongside the written calculation to help to show working.	$\begin{gathered} 47-24=23 \\ -20+7 \\ -20+4 \\ 20+3 \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtractio n method with regroupin g	$\begin{array}{r} 51 \\ -28 \\ \hline 37 \\ \hline \end{array}$ Use base 10 and a place value grid to demonstrate exchanging one ten for ten ones.	Move to a place value grid and counters. Pupils can draw their own counters.	Move to abstract method (show alongside concrete resources). Move to subtracting a 2-digit number when ready.

$\begin{aligned} & \text { n } \\ & \stackrel{0}{0} \\ & \end{aligned}$	Subtract with at least 4digits, including money and measures. Subtract with decimal values including mixtures of integers and decimals.	As Year 4	As Year 4 Children can use draw their own pv chart and counters.	
$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & \underset{\sim}{0} \end{aligned}$	Subtract with increasingl y large and more complex numbers (including decimal values).	As Year 5	As Year 5	

Multiplication				
	Key Skill	Concrete	Pictorial	Abstract
$\begin{aligned} & - \\ & \vdots \\ & \underset{\sim}{0} \end{aligned}$	Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together.
	Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
	Making equal groups and counting the groups	Use manipulatives to create equal groups.	Use a number line or pictures to continue support in counting in multiples.	$2 \times 4=8$

	Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
	Understandin g arrays	Use objects laid out in arrays to find the a swers to 2 lots 5,3 lots of 2 etc.	Draw representations of arrays to show understanding.	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$
$\begin{aligned} & \text { N } \\ & \text { © } \\ & \end{aligned}$	Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together.

Counting in multiples of 2, 3, 4, 5, 10 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models.$5+5+5+5+5+5+5+5=40$$1 i 1$ $1 i 1$ $1 i 1$ $1 i 1$ 	Number lines, counting sticks and bar models should be used to show representation of counting in multiples. 3 3 3 3	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square
Multiplication is commutative (arrays)	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity. 0000 0000 0000	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Using the inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

	Column multiplication HTO $x 0$ ThHTO x 0	As above	As above	As above
$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	Column multiplication TO x TO	Manipulatives may still be used with the corresponding long multiplication modelled alongside. Partition one number into 10 s and 1 s , then add the parts. $23 \times 15=?$ $23 \times 15=345$	Use an area model then add the parts.	Use column multiplication, ensuring understanding of place value at each stage.
	Column multiplication ThHTO x TO		Use the area model then add the parts. $143 \times 12=1.716$ There are 1,716 boxes of cereal in totol. $143 \times 12=1,716$	Use column multiplication, ensuring understanding of place value at each stage. Progress to include examples that require multiple exchanges as understanding, confidence and fluency build.

Multiplying a whole number by a decimal		I	Using the grid the place valu Remembering holder. $\begin{array}{r} 9.82 \\ \times \quad 23 \\ \hline 29.46 \\ 9.82 \\ \times \quad 23 \\ \hline 29.46 \\ 196.40 \end{array}$	to correctly line up ns for multiplying. imal point and place $\begin{array}{r} 9.82 \\ \times \quad 23 \\ \hline 29.46 \\ +\begin{array}{r} 76.40 \\ \hline 225.86 \end{array} \\ \hline 1 \end{array}$

Division						
	Key Skill	Concrete	Pictorial			Abstract
$\begin{aligned} & \overline{0} \\ & \underset{\sim}{0} \end{aligned}$	Division as sharing	I have 10 cubes. Can you share them equally into two groups.	Children use pictures or shap ties. 8 silareu vetween $<$ is 4 Sharing:	es to share qu 8)		12 shared between 3 is 4 .
$\begin{aligned} & \text { N } \\ & \text { O} \\ & \text { d } \end{aligned}$	Division as sharing	I have 10 cubes. Can you share them equally into two groups.	Children use pictures ties. Children use bar mode understanding. $12 \div 4=3$	shapes to $=4$ ing to show	are quanti- A8 and support	$12 \div 3=4$ 12 sweets are shared equally between three people. How many do they get each?

Division using
arrays.
Demainders
Divide at
least HTO by
O.

